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Abstract

This paper proposes a design method for floating-point
numerical function generators (NFGs) using multi-valued
decision diagrams (MDDs). Our method applies to mono-
tone elementary functions in which real values are con-
verted into integer values that are represented by edge-
valued MDDs (EVMDDs). We show that EVMDDs use
fewer nodes by one or two orders of magnitude than two
other types of decision diagrams, MTBDDs and BMDs.
EVMDDs produce fast and compact floating-point NFGs
for real-valued elementary functions, with a speed improve-
ment of 86% over a recently proposed floating-point imple-
mentation [4].

1. Introduction

Elementary functions are widely used in many appli-
cations, such as computer graphics and digital signal pro-
cessing [14]. Various design methods for numerical func-
tion generators (NFGs) have been proposed. Among them,
fixed-point representation of elementary functions is usu-
ally adopted [3,11,18,21,23]. But, for elementary functions
with a wide domain and range, a fixed-point representa-
tion requires a large number of bits to represent a large real
value. This produces large NFGs. To represent a large real
value with fewer bits, floating-point representation is often
used. An IEEE standard for real values exists [7]. However,
floating-point representation tends to produce complex and
slow NFGs. Thus, the design of floating-point NFGs is es-
pecially hard, and only design methods for some elemen-
tary functions are known [4, 5, 8, 22, 26]. Since these de-
sign methods are intended only for specific functions, dif-
ferent functions need different design methods and architec-
turers. This paper proposes a systematic design method for
floating-point NFGs for a wide range of elementary func-
tions.

For design of typical digital circuits, systematic methods
using various decision diagrams such as binary decision di-
agrams (BDDs) [6,12] have been established [13,19,25,27].
Thus, we consider a design method using decision dia-
grams for floating-point NFGs. Since decision diagrams
are not robust enough to represent all classes of the func-

tions compactly, choosing a decision diagram appropriate
to a given class of functions is important. Although deci-
sion diagrams appropriate to a fixed-point representation of
elementary functions have been presented [16, 17, 20, 24],
as far as we know, no study on graph-based representations
for floating-point elementary functions has been presented.
As shown in Fig. 1, fixed-point and floating-point represen-
tations convert an elementary function to quite different in-
teger functions. Even for the simple linear function such
as f (X) = 5X +13.7, floating-point representation converts
to a complex integer function. Thus, floating-point elemen-
tary functions should be considered as a different class of
functions than fixed-point ones.

This paper considers graph-based representations appro-
priate to floating-point elementary functions. To analyze
their complexities, this paper introduces a transition point
and a new class of integer functions, an Mp-monotone in-
creasing function with transition points. Theoretical anal-
ysis and experimental results show that edge-valued multi-
valued decision diagrams (EVMDDs) can compactly rep-
resent both fixed-point and floating-point elementary func-
tions. And, by using EVMDDs, we can automatically gen-
erate fast and compact floating-point NFGs for a wide range
of elementary functions.

2. Preliminaries

2.1. Number Representation and Precision

Definition 1 Let B = {0,1}, Z be the set of the integers,
and R be the set of the real numbers. An n-input m-output
logic function is a mapping: Bn → Bm, an integer function
is a mapping: Z → Z, and a real function is a mapping:
R → R.

Definition 2 The n-bit precision binary floating-point rep-
resentation of a number X is a binary n-tuple

X = (s, ea−1,ea−2, . . . ,e0, db−1,db−2, . . . ,d0)2,

where s ∈ B is the sign bit, E = (ea−1,ea−2, . . . ,e0)2 is the
exponent, and D = (db−1,db−2, . . . ,d0)2 is the significand.
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(a) Fixed-point representation (integer bits: 15, fractional bits: 0).
Domain: 0 ≤ X ≤ 32,767 (smallest positive value: 1).
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(b) Floating-point representation (exponent: 5 bits, significand: 10 bits).
Domain: 0 ≤ X < ∞ (max: 131,040, smallest positive value: 2−24).

Figure 1. Fixed-point and floating-point representations (integer functions) of f (X) = 5X + 13.7.

Table 1. Floating-point representation of X
with a-bit exponent and b-bit significand.

Type Exponent E Significand D Value of X
Zero (0,0, . . . ,0)2 (0,0, . . . ,0)2 0

Subnormal no. (0,0, . . . ,0)2 �= (0,0, . . . ,0)2 (−1)s ×2−Es ×0.D
Infinity (1,1, . . . ,1)2 (0,0, . . . ,0)2 (−1)s ×∞

Not a no. (NaN) (1,1, . . . ,1)2 �= (0,0, . . . ,0)2 NaN
Normal no. Others (−1)s ×2E−En ×1.D

Bias value for subnormal numbers: Es = 2a−1 −2
Bias value for normal numbers: En = 2a−1 −1

a and b are the numbers of bits for the exponent and the
significand respectively, and n = a + b + 1. The value of X
is shown in Table 1. When |X |< 22−2a−1

, X is a subnormal
number, in which the exponent E is biased by Es = 2a−1−2,
and the significand D represents only fractional bits of a
fixed-point value smaller than 1. When 2a ≤ |X |, X is infin-
ity. When X cannot be defined as a number, X is represented
as not a number (NaN). In other cases, X is a normal num-
ber, in which the exponent E is biased by En = 2a−1−1, and
the significand D represents only fractional bits of a fixed-
point value that is larger than or equal to 1 and smaller
than 2.

According to IEEE Standard 754-2008 [7], half (16-bit)
precision has a = 5 and b = 10, single (32-bit) precision
has a = 8 and b = 23, double (64-bit) precision has a = 11
and b = 52, and quad (128-bit) precision has a = 15 and
b = 112.

Note that an n-bit precision floating-point representation
converts a real function into an n-input n-output logic func-
tion. The logic function, in turn, can be converted into an
integer function by considering binary vectors as integers.
That is, we can convert a real function into an integer func-
tion: Pn → Pn, where Pn = {0,1, . . . ,2n − 1}. This is what
was done in Fig. 1 for the real function f (X) = 5X + 13.7.
In this paper, elementary functions are converted into inte-
ger functions by using a floating-point representation, un-
less stated otherwise. And, for simplicity, each bit in the
floating-point representation of X is denoted by xi, where
x0 is the least significant bit.

Example 1 Table 2 (a) is the function table for
√

X. The 8-
bit precision (3-bit exponent and 4-bit significand) floating-
point representation of this function is the logic function

Table 2. Tables for the 8-bit precision (3-bit ex-
ponent, 4-bit significand) floating-point

√
X .

(a) Table for
√

X .
X

√
X

0.000000 0.000000
0.015625 0.125000
0.031250 0.171875
0.046875 0.218750
0.062500 0.250000
0.078125 0.281250
0.093750 0.312500
0.109375 0.328125

...
...

(b) Truth table for fb(X).
X fb(X)

0 000 0000 0 000 0000
0 000 0001 0 000 1000
0 000 0010 0 000 1011
0 000 0011 0 000 1110
0 000 0100 0 001 0000
0 000 0101 0 001 0010
0 000 0110 0 001 0100
0 000 0111 0 001 0101

...
...

(c) Table for f (X).
X f (X)
0 0
1 8
2 11
3 14
4 16
5 18
6 20
7 21
...

...

fb(X) in Table 2 (b). By converting binary vectors into in-
tegers, we have the integer function f (X) of fb(X) in Ta-
ble 2 (c). That is, our 8-bit precision floating-point repre-
sentation of f (X) =

√
X corresponds to the integer function

of Table 2 (c). (End of Example)

2.2. Edge-Valued MDDs

Definition 3 An edge-valued BDD (EVBDD) [10] is a
variant of the BDD, and represents an integer function.
The EVBDD is obtained by repeatedly applying the expan-
sion f = xi f0 + xi( f ′1 + α) to the integer function, where
f1 = f ′1 + α, and α is the constant term of f1. The EVBDD
consists of only one terminal node representing 0 and non-
terminal nodes with 1-edges having integer weights α. In
the EVBDD, 0-edges always have zero weights. The incom-
ing edge into the root node can have a non-zero weight.
The output (integer) value of an EVBDD is the sum of the
weights associated with the path taken from the root node
to the terminal node.

Definition 4 For a set of n binary variables {X}, if {X} =
{Xu} ∪ {Xu−1}∪ . . .∪ {X1}, {Xi} �= /0, and {Xi} ∩ {Xj} =
/0 (i �= j), then (Xu,Xu−1, . . . ,X1) is a partition of X. Each
Xi forms a super variable. Let |Xi| = ki and ku + ku−1 +
. . . + k1 = n. Then, by considering each super variable as
a multi-valued variable, an integer function f (X) : Z → Z
can be converted into a multi-valued input integer function
f (Xu,Xu−1, . . . ,X1) : Pu ×Pu−1 × . . .×P1 → Z, where Pi =
{0,1,2, . . . ,2ki −1}.
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Figure 2. EVBDD and EVMDD for an integer
function.

Definition 5 An edge-valued MDD (EVMDD) [16] is an
extension of the MDD [9,15], and represents a multi-valued
input integer function. It consists of one terminal node rep-
resenting 0 and non-terminal nodes. Edges have integer
weights. Edges labeled by a logic 0 have integer 0 weight.

Example 2 Fig. 2 (a) and (b) show the EVBDD and the
EVMDD, respectively, for the same integer function. In
Fig. 2 (a), dashed lines and solid lines denote 0-edges and
weighted 1-edges, respectively. In the EVMDD, the set of
binary variables {X} is partitioned into {X2} = {x3,x2,x1}
and {X1} = {x0}. To obtain the function value 3 for X =
(1,0,1,0)2, we traverse the EVBDD or the EVMDD from
the root node to the terminal node according to the input
values, and obtain the function value as the sum of the
weights for the traversed edges. Note that we traverse the
EVMDD using X2 = 5 and X1 = 0. (End of Example)

3. Graph-Based Representation of Floating-
Point Elementary Functions

3.1. Transition Points and Mp-Monotone
Increasing Functions

Definition 6 An integer function f (X) such that 0 ≤ f (X +
1)− f (X)≤ p and f (0) = 0 is an Mp-monotone increasing
function. That is, for an Mp-monotone increasing function
f (X), f (0) = 0, and increasing X by 1 increases the value
of f (X) by at most p.

Definition 7 Given an integer p and an integer function
f (X), a point T that satisfies f (T + 1) − f (T ) < 0 or
p < f (T + 1)− f (T) is a transition point.

Definition 8 Given an integer p, an integer function f (X)
that satisfies 0 ≤ f (X + 1)− f (X) ≤ p and f (0) = 0 for
all X except for k transition points is an Mp-monotone in-
creasing function with k transition points. That is, for an
Mp-monotone increasing function with k transition points
f (X), f (0) = 0, and for all X except for k transition points,
the increment of X by one increases the value of f (X) by at
most p.

Theorem 1 For an n-bit Mp-monotone increasing function
with k transition points f (X), the number of nodes in an
EVBDD is at most

2n−l +
l

∑
i=1

(p + 1)2i−1 +(k−1)l, (1)

where l is the largest integer satisfying 2n−l ≥ (p+1)2l−1 +
k, and the variable order of the EVBDD is xn−1,xn−2, . . . ,x0
(from the root node to the terminal node).

(Proof) See Appendix.
From Theorem 1, if the number of transition points k in-

creases by 1, the number of nodes in the EVBDD increases
by at most l. Thus, when k is small, an Mp-monotone in-
creasing function with k transition points can be represented
by an EVBDD with the size comparable to an EVBDD for
Mp-monotone increasing function.

Corollary 1 Let f (X) be an Mp-monotone increasing
function with k transition points, and let g(X) be an affine
transformation of f (X): g(X) = a f (X)+ b, where a and b
are integers. Then, the EVBDDs for f (X) and g(X) have
the same number of nodes.

3.2. Conversion of Elementary Functions to
Mp-Monotone Increasing Functions

Unlike the integer function of fixed-point representation,
the integer function of floating-point representation often
has discontinuities, as shown in Fig. 1. As shown in Fig. 3,
both the exponent E and significand D can either oscil-
late or exhibit sharp transitions or both, even if the original
function has only smooth transitions. Floating-point repre-
sentation with a sign bit is more complex. Thus, analysis
of integer functions obtained by floating-point representa-
tion of elementary functions is very difficult. However, by
considering transition points defined in the previous sub-
section, we can convert various elementary functions into
Mp-monotone increasing functions, and analyze the class
of functions easily. In the following, we explain how to
convert elementary functions into Mp-monotone increasing
functions.

First, we consider the elementary functions whose do-
main includes negative numbers. To accommodate negative
floating-point numbers, a sign bit is needed. Thus, for in-
teger functions f (X) obtained by floating-point representa-
tion, the magnitude relation of X for negative numbers be-
comes the inverse of the original one, and monotonicity of
the original functions can be lost. To preserve monotonic-
ity in the original functions, instead of f (X), we use f (Y ),
where

Y = (xn−1,xn−2 ⊕ xn−1,xn−3 ⊕ xn−1, . . . ,x0 ⊕ xn−1)2, (2)

for X = (xn−1,xn−2, . . . ,x0)2. Similarly, elementary func-
tions whose range (function values) includes negative num-
bers are converted into the integer functions g(X):

g = ( fn−1, fn−2 ⊕ fn−1, fn−3 ⊕ fn−1, . . . , f0 ⊕ fn−1)2, (3)

where each fi denotes each bit in floating-point representa-
tion of function values f (X).
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Figure 3. Half precision floating-point representation of f (X) = 5X + 13.7 (0 ≤ X < ∞).
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Figure 4. Conversion of exp(X) (−∞ < X < ∞) into integer functions.

Table 3. Class of half precision floating-point
elementary functions.

Functions p k Theorem 1 Upper bound
f (X) only for Mp [16]

5X +13.7 2 1,306 14,324 10,406
sin−1(X) 1 507 5,752 4,231
tan−1(X) 1 83 4,480 4,231
exp(X) 8 483 18,086 17,120
ln(X) 7 397 9,504 8,710
1/X 2 141 6,733 6,310√

X 1 514 5,773 4,231
k: Number of transition points.
Upper bound only for Mp: Upper bound on the number
of nodes for Mp-monotone increasing function without
transition points.

Example 3 Fig. 4 (a) shows the half precision floating-
point representation f (X) of exp(X). Since the domain in-
cludes negative numbers, f (X) is not monotone even though
the original function exp(X) is monotone. On the other
hand, the integer function f (Y ) using (2) is monotone, ex-
cept for a few transition points as shown in Fig. 4 (b).

(End of Example)

Second, we consider the value of p, used in the Mp-
monotone increasing function representation. Larger p
yields fewer transition points k, while smaller p yields more
values of k. Thus, choosing a p appropriate to a given func-
tion is important. Since Theorem 1 holds for any p, we
choose the p that makes (1) minimum to obtain a tight up-
per bound on the number of nodes.

Table 3 shows for various floating-point elementary
functions, the appropriate value of p, the number of tran-
sition points k, and our upper bound on the number of
nodes in an EVBDD for the Mp-monotone increasing func-
tion with k transition points. And, for comparison, this ta-
ble shows the upper bound on the number of nodes in an
EVBDD for the Mp-monotone increasing function without
transition points. It has been derived to analyze the fixed-
point elementary functions [16]. Note that, in this table,
floating-point representations of the functions whose do-
main includes only non-negative numbers and the odd func-
tions satisfying f (−X) = − f (X) have no sign bit in X (i.e.,
n = 15). And, monotone decreasing functions are converted
into monotone increasing functions using the affine trans-
formation (Corollary 1).

This table suggests that many elementary functions can
be converted into Mp-monotone increasing functions with a
small number of transition points and a small p, and can be
represented compactly by an EVBDD with the size compa-
rable to an EVBDD for Mp-monotone increasing function.

Table 4 compares the number of nodes in MTBDDs [2],
BMDs [1], and EVBDDs for half precision floating-point
elementary functions. From this table, we can see that EVB-
DDs have fewer nodes by one or two orders of magnitude
than MTBDDs and BMDs. In addition to the functions
shown in Table 4, we compared the size of DDs for other 18
elementary functions. For all the functions we investigated,
the size of the EVBDDs was smaller than the MTBDDs and
the BMDs.

As shown in [16], by converting EVBDDs into
EVMDDs, we can further reduce memory size of deci-
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Table 4. Number of nodes in DDs for half pre-
cision floating-point elementary functions.

Function Number of nodes R1 R2
f (X) MTBDD BMD EVBDD

5X +13.7 49,669 12,470 726 1 6
sin−1(X) 30,652 3,618 397 1 11
tan−1(X) 33,245 10,039 926 3 9
exp(X) 23,035 23,121 2,356 10 10
ln(X) 27,838 26,173 2,500 9 10
1/X 52,750 4,259 567 1 13√

X 40,145 5,619 518 1 9
Average 36,762 12,186 1,143 4 10

R1 = (EVBDD)/(MTBDD)×100
R2 = (EVBDD)/(BMD)×100
Variable orders of DDs are xn−1,xn−2, . . . ,x0.
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LUT
memory

LUT
memory
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LUT
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Figure 5. Architecture for floating-point NFGs
based on EVMDDs.

sion diagrams, and obtain more compact representations.
In the next section, we present an architecture and a de-
sign method for floating-point NFGs taking advantage of
EVMDDs.

4. Floating-Point Function Generators

4.1. Architecture for Floating-Point NFGs

In EVMDDs, function values can be obtained by travers-
ing the EVMDDs from the root node to the terminal node,
and accumulating the weights of traversed edges. Thus, we
can compute function values by the architecture consisting
of only memories and integer adders shown in Fig. 5. In
the architecture shown in Fig. 5, an EVMDD is decom-
posed with each multi-valued variable Xi, and stored in LUT
memories for Xi. The interconnecting lines between ad-
jacent LUT memories are called rails, and they represent
sub-functions in the EVMDD. And, the outputs from each
LUT memory to an adder (called Arails) represent the sum
of edge weights.

Example 4 By realizing the EVMDD in Fig. 2 (b) with the
architecture in Fig. 5, we have the circuit shown in Fig. 6. In
this figure, r0 denotes the rails that represent sub-functions
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Figure 6. Example of floating-point NFGs
based on EVMDDs.

in the EVMDD, and a0 and a1 denote the Arails that repre-
sent the sum of edge weights. Since this EVMDD has only
two sub-functions with respect to X2, r0 takes a value 0 or
1 to represent the sub-functions. When r0 = 0, the repre-
sented sub-function is a constant function 0, and thus the
edge weight a1 is 0 independently of the value of X1. On
the other hand, when r0 = 1, a1 depends on the value of X1.

(End of Example)

The proposed NFGs have the following features:

1. Since the proposed NFG just traverses an EVMDD
and computes the sum of edge weights (integers), it
requires only the integer adders to compute function
values of a floating-point function. That is, it requires
neither the rounding circuit nor the normalization cir-
cuit.

2. By changing the data for the LUT memories, a wide
range of elementary functions can be realized by the
same architecture.

3. Since the proposed NFG directly realizes the function
table of a floating-point function using an EVMDD, it
is more accurate than existing NFGs using polynomial
approximation [4, 5, 8, 22, 26].

4. The proposed NFG is suitable for pipeline processing,
and thus it can achieve a high throughput.

4.2. Design Method for Floating-Point
NFGs Using EVMDDs

For a given elementary function, its domain, and preci-
sion n, we can automatically generate the circuit in Fig. 5.
First, convert a given elementary function represented in n-
bit precision floating-point into an integer function, next
represent the integer function using an EVMDD, and fi-
nally generate HDL code for the circuit in Fig. 5 from the
EVMDD. Memory size and delay time of the generated cir-
cuit mainly depend on size and path length of EVMDD.
Therefore, the memory minimization algorithm and the
APL minimization algorithm for MDDs [15] are useful to
produce fast and compact floating-point NFGs.

As mentioned in Section 3.2, the elementary functions
whose domain or range includes negative numbers are con-
verted into integer functions f (Y ) or g(X) using (2) or (3).
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Table 5. Comparison results with the existing
floating-point NFG.
Floating-point NFGs Throughput [MHz] Delay [nsec.]
Circuit for ln(X) [4] 100 39

Our NFG using EVMDD 186 27

f (Y ) or g(X) is realized with the architecture in Fig. 5. To
restore f (Y ) to the original function f (X), our synthesis
system for NFG automatically inserts the circuit realizing
(3) in the inputs of the NFG in Fig. 5. Similarly, to restore
g(X) to f (X), our synthesis system inserts the circuit real-
izing (2) in the outputs of the NFG. For the odd functions
satisfying f (−X) = − f (X), fs = xs is realized, where fs
and xs denote the sign bits of the function value and the in-
put variable X , respectively. And, for the functions whose
domain includes only non-negative numbers, such as

√
X

and ln(X), the circuit that produces NaN when xs = 1 is in-
serted in the outputs of the NFG automatically.

4.3. FPGA Implementation Results

To show the usefulness of our floating-point NFGs, we
implemented a half precision floating-point NFG for ln(x)
using the Xilinx Virtex-II FPGA (XC2V1000-4), and com-
pared it with the dedicated circuit for ln(X) proposed in [4]
in terms of throughput and delay. Table 5 shows that our
NFG has 86% greater throughput.

Our NFG is a general-purpose circuit that can realize
a wide range of elementary functions. Nevertheless, it
achieves a higher throughput and a shorter delay time than
the special-purpose circuit. Therefore, EVMDDs are useful
to design fast and compact floating-point NFGs for elemen-
tary functions.

5. Conclusion and Comments

This paper has introduced a new type of integer function,
called an Mp-monotone increasing function with transition
points. We also derived an upper bound on the number of
nodes in an EVBDD to represent the function. Experimen-
tal results showed that many monotone elementary func-
tions can be converted into Mp-monotone increasing func-
tions with a small number of transition points and a small
p, and can be represented by EVBDDs with fewer nodes by
one or two orders of magnitude than MTBDDs and BMDs.
This paper has also presented a design method for floating-
point NFGs based on EVMDDs. By using EVMDDs, we
can automatically generate higher performance NFGs than
existing NFG design techniques.

This paper showed that EVMDDs are promising to de-
sign floating-point NFGs. Our future work includes study-
ing the proposed NFGs with high precisions in more detail.
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Appendix

Proof for Theorem 1 Suppose that an EVBDD for f (X)
is partitioned into two parts: the upper and the lower parts

as shown in Fig. A. In this case, the lower part repre-
sents l-bit Mp-monotone increasing functions and transition
points, and the upper part represents the selector function.
The upper part has the maximum number of nodes when it
forms a complete binary tree. That is, the maximum number
of nodes in the upper part is 2n−l − 1. The lower part has
the maximum number of nodes when it represents all the
l-bit Mp-monotone increasing functions and the transition
points. As proven in [16, 17], the number of nodes needed
to represent all the l-bit Mp-monotone increasing functions
is

l

∑
i=1

(p + 1)2i−1 − l.

Thus, in the following, we show the maximum number of
nodes needed to represent all the transition points in the
lower part.

First, we assume the case where k = 1 transition point is
included. Let the transition point T be

T = (tn−1,tn−2, . . . ,t j+1,t j,t j−1, . . . ,t0)2.

Then, for an integer j, we have the following:

T = (tn−1,tn−2, . . . ,t j+1,0,1,1, . . . ,1)2

T + 1 = (tn−1,tn−2, . . . ,t j+1,1,0,0, . . . ,0)2.

Let q = f (T + 1)− f (T ), then q < 0 or p < q holds, and
it can be represented by the EVBDD shown in Fig. B. In
Fig. B, a is the sum of the weights of 1-edges traversed
from the node v0 to the terminal node, and the sub-functions
f0, f1, f2, f3 are Mp-monotone increasing. As shown in
Fig. B, the node v and its parent nodes have only one in-
coming edge. If there is a node with more than one in-
coming edge, it contradicts the assumption of k = 1. Since
the nodes other than v and its parent nodes represent Mp-
monotone increasing functions, only v and its parent nodes
are required to represent a transition point. When j = 0, the
number of required nodes is maximum, and is l. That is, l
nodes are needed to represent a transition point.

When k transition points are represented without shared
nodes, the lower part of EVBDD has the maximum number
of nodes:

l

∑
i=1

(p + 1)2i−1 − l + kl =
l

∑
i=1

(p + 1)2i−1
+(k−1)l.

By adding the number of nodes in the upper part and one
terminal node to this, we have the theorem. The numbers
of Mp-monotone increasing functions and transition points
that can be represented in the lower part are (p+1)2l−1 [16,
17] and k, respectively. The sum of them never exceeds
the number of functions which can be selected by the upper
part: 2n−l. Therefore, we have

(p + 1)2l−1 + k ≤ 2n−l.
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